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Summary. Recently, median regression models have received increasing attention. When continuous responses follow a
distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient
estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression
models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median
regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process.
Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to
analyze a longitudinal data set arising from a controlled trial of HIV disease (Volberding et al., 1990, The New England
Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under
various situations. An extension to estimation of the association parameters is outlined.
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1. Introduction
Inverse probability weighted generalized estimating equations
(IPWGEE) are proposed by Robins, Rotnitzky, and Zhao
(1995) to deal with incomplete longitudinal data arising from
a missing at random (MAR) mechanism. Since then there has
been considerable research on this marginal method (e.g, Fitz-
maurice, Molenberghs, and Lipsitz, 1995; Yi and Cook, 2002a,
2002b). This approach is widely viewed as attractive because
it does not require complete specification of the joint distri-
bution of the longitudinal responses but rather is based only
on specification of the first two moments. In the formulation
of IPWGEE, mean regression models are typically utilized to
modulate marginal responses.

Mean regression models are feasible for modeling data
whose distribution is normal or nearly normal. When distribu-
tions have heavy tails or are highly skewed, usual mean regres-
sion models may fail to produce efficient estimates; but me-
dian regression models would perform satisfactorily (Koenker
and Bassett, 1978; Koenker and Xiao, 2001). For a Cauchy
error distribution, for instance, the mean regression estimate
has an infinite variance, whereas the median regression es-
timate just has a finite variance. Recently, there has been
increasing interest in median regression models. For instance,
in survival analysis median regression models have been dis-
cussed extensively. Ying, Jung, and Wei (1995) advocated

that the median is a simple and meaningful measure for the
center of a long-tailed survival distribution and it can be bet-
ter estimated than the mean in settings with moderate censor-
ing. Yang (1999) and Portnoy (2003) developed methods for
median regression by forming a weighted form of hazard and
survival functions. Bang and Tsiatis (2002) proposed semi-
parametric procedures for estimating the parameters in me-
dian regression models for censored data. In the context of
generalized linear models, Morgenthaler (1992) discussed me-
dian regression models based on the quasilikelihood approach.
Jung (1996) explored median regression models to address de-
pendent observations. He, Fu, and Fung (2003) and Hogan
and Lee (2004) discussed quantile models for complete longi-
tudinal data.

Although longitudinal studies are frequently designed to
collect data on every individual in the sample at each assess-
ment, incomplete data often arise. Subjects may drop out of
the study before the end of the follow-up. In many contexts
the distribution of data may be far from a normal or symmet-
rical one. To handle data with these features, in this article
we explore using median regression models to analyze longitu-
dinal data with dropouts and propose a weighted estimating
equation approach. The proposed method is essentially differ-
ent from that of Robins et al. (1995) as the proposed weighted
estimating functions are discontinuous for parameters, and
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therefore, the asymptotic properties established in Robins et
al. (1995) for the mean regression estimators are not appli-
cable to the current situation (Newey and McFadden, 1994).
In this article, we establish the asymptotic properties for the
resultant estimators.

This article is partially motivated by longitudinal data aris-
ing from a controlled trial of HIV disease (Volberding et al.,
1990). Infection with HIV causes chronic, progressive deple-
tion of CD4+ cells, and this depletion, together with the
infection of macrophages and other cells, would create an im-
mune deficiency that leads to the cancers and opportunistic
infections characteristic of the AIDS. As one of primary objec-
tives, the study investigates the treatment effect of Zidovudine
on increasing CD4+ cell counts. Eight hundred and ninety-
two adults were randomized to a treatment or control group.
The subjects were followed up longitudinally and the mea-
surements were collected at weeks 8, 16, 32, and 48, respec-
tively. The distributions of the outcomes in treatment and
control arms are skewed with a number of outliers. Figure 1
displays the distributions of CD4+ cell counts for treatment
and control arms at the initial assessment. Furthermore, there
was a portion of the participants who were lost to follow-up
during the trial. To address these issues, we develop an analy-
sis method based on median regression models with dropouts
accounted for.

The remainder of this article is organized as follows.
Section 2 introduces the notation and framework, and in Sec-
tion 3 we discuss estimation and inference procedures. In
Section 4, we analyze the CD4+ cell count data with the
proposed method. Simulation studies are conducted to as-
sess the performance of the proposed method under a vari-
ety of situations and the results are reported in Section 5.
An extension to estimation of the association parameters is
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Figure 1. Histograms of the CD4+ cell counts for the treat-
ment and placebo groups at the initial assessment.

outlined in Section 6. General discussion is presented in the
last section.

2. Notation and Framework
2.1 Median Regression Models
Let Y ij be the continuous response for subject i at time point
j, and xij = (xij 1, xij 2, . . . , xijp)′ be the p × 1 covariate vector
for subject i at time j, j = 1, 2, . . . , m; i = 1, 2, . . . , n. Here
xij may solely consist of baseline covariates such as gender,
age, and treatment status, or of functions of baseline covari-
ates. It may also consist of external covariates that are time
varying in the sense of Robins et al. (1995). Let Y i = (Y i1,
Y i2, . . . , Y im)′ and xi = (x′

i1, x′
i2, . . . , x

′
im)′ be the response

and covariate vectors for subject i, respectively. Given the co-
variates xi , let μij be the median of Y ij , and φ−1f (μij ) be
the probability density function of Y ij at μij , where φ > 0
is a scalar dispersion parameter, and f is a known function.
Here we assume that f is continuous with f (μij ) > 0. This
assumption implies that the cumulative distribution function
of Y ij is continuous and differentiable in a neighborhood of
μij . Furthermore, it warrants the uniqueness of the median.
Denote μi = (μi1, μi2, . . . , μim)′.

For i = 1, 2, . . . , n and j = 1, 2, . . . , m, consider the median
regression model

g(μij ) = x′
ij β, (1)

where g is a known link function, and β is the vector of re-
gression parameters. This model implies that the dependence
of median μij on the subject level covariates xi is completely
reflected by the time-specific covariates xij . An analogous as-
sumption has been widely used in modeling longitudinal data
with mean regression. See Fitzmaurice et al. (1995) and Cook,
Zeng, and Yi (2004), for example.

Median regression models have a long history. It has been
established that, for instance, sample median is the maxi-
mum likelihood estimate of a double exponential distribution.
As discussed in Morgenthaler (1992), modeling the median
rather than mean is required when using the least-absolute-
deviations (LAD) approach. If all response components Y ij

are independent, the LAD estimate of β is obtained by mini-
mizing

∑n

i=1

∑m

j=1 |Yij − μij |.

2.2 Models for the Dropouts
Let Rij be 1 if Y ij is observed, and 0 otherwise. Dropouts or
monotone missing data patterns are considered here. That is,
Rij = 0 implies Rij ′ = 0 for all j ′ > j. Denote R i = (Ri1,
Ri2, . . . , R im)′. Without loss of generality, assume that Ri1 =
1 for every subject i. According to the dependence of the
missing data process on the response process, missing data
mechanisms may be classified as missing completely at ran-
dom (MCAR), MAR, and not missing at random (NMAR)
(e.g., Kenward, 1998). In this article, we assume an MAR
mechanism for the dropout process. Namely, given the covari-
ates, the conditional distribution f (r i |xi , y i ) of the missing
data indicator vector R i depends on the observed response
components yobs

i only.
Let λij = P (Rij = 1 |Ri,j−1 = 1, xi , y i ), and πij =

P (Rij = 1 |xi , y i ). Note that πij =
∏j

t=2λit . Let H y
ij =

{yi1, . . . , yi,j−1} denote the response history up to (but not
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including) time point j. Logistic regression models are com-
monly used to model the dropout process:

logit λij = u′
ij α, (2)

where uij is the vector consisting of the information of the
covariates xi and the observed responses H y

ij , and α is the vec-
tor of regression parameters of dimension q, say. This model
implies that the conditional probability λij is determined by
the response history H y

ij , given the covariates and that subject
i is in the study at the previous time point j − 1. Model (2)
has been commonly used in modeling the dropout process. It
features an MAR mechanism, but not vice versa.

Let M i be the random dropout time for subject i,
and mi be a realization, i = 1, 2, . . . , n. Define Li (α) =
(1 − λim i

)
∏m i −1

t=2 λit , if mi < m; and Li (α) =
∏m i

j=2 λij , if
mi = m, where λit is determined by model (2). Let S i (α) =
∂log Li (α)/∂α be the vector of score functions contributed
from subject i. Solving

S(α) =
n∑

i=1

S i (α) = 0, (3)

leads to the estimator α̂.

3. Estimation and Inference
3.1 Estimating Equations for β

For i = 1, 2, . . . , n, denote D i = ∂μi /∂β′. Let Γi =
diag(f (μij ), j = 1, 2, . . . , m), εij = I(Yij � μij ) − 1/2, and
εi = (εi1, εi2, . . . , εim)′. Here I(.) is the indicator function.
Denote pijk = P (Y ij � μij , Y ik � μik |xi ) for j �= k. It is
easily seen that the covariance matrix of εi is given by V i =
var(εi ) = [vijk ]m×m , where v ijj = 1/4, and v ijk = pijk − 1/4 for
j �= k.

When there are no missing data, the generalized estimating
equations for β are given by

n∑
i=1

φ−1D ′
iΓiV

−1
i εi = 0. (4)

This formulation is discussed by Jung (1996) by means of
the quasilikelihood method. It has been shown that the re-
sulting estimators have minimal asymptotic variance within
a certain class of consistent estimators. Godambe (2001) justi-
fied a similar form from the viewpoint of optimum estimating
functions.

If missing observations are present, then estimating func-
tions in equation (4) constructed from the observed outcomes
are no longer unbiased if missing data mechanisms are not
MCAR. A proper adjustment accommodating the dropout
information is needed. Let Δi = diag(I(Rij = 1)/πij , j = 1,
2, . . . , m) be the weight matrix accommodating missingness,
and U i = φ−1D ′

iΓiV
−1
i Δiεi , for i = 1, 2, . . . , n. Then, for a

given α,

U (β, α) =
n∑

i=1

U i , (5)

are unbiased estimating functions for β, provided model
(2) for the missingness probability λij is correctly specified.
Indeed,

E(U i ) = EY |X ER |(Y ,X )

[
φ−1D ′

iΓiV
−1
i Δiεi

]
= EY |X

[
φ−1D ′

iΓiV
−1
i

·diag

(
P (Rij = 1 |xi , yi )

πij
, j = 1, 2, . . . , m

)
·εi

]
= 0.

We note that the form of U i in equation (5) is analogous
to the structure of the IPWGEE for estimating mean regres-
sion parameters discussed in Robins et al. (1995). However,
an essential difference exists in the estimating functions for
the mean and median regression parameters. The former func-
tions are continuous functions of parameters for which asymp-
totic properties have been well established (e.g., Robins et al.,
1995), whereas the latter ones are discontinuous, and this in-
troduces additional complexity in establishing the theoretical
properties of the resultant estimators.

3.2 Estimation Algorithm
We note that in practical situations, α (or πij ) is unknown
and needs to be replaced with a consistent estimate when us-
ing U (β, α) to estimate β. In this section, we describe a three-
stage estimation procedure. As φ is a constant, we can drop φ
from equation (5) when actually performing estimation of β.
Let U (β, α) = (U (1)(β, α), . . . , U (p )(β, α))′, where U (k )(β,
α) denotes the estimating function for parameter βk . Given
β(t) = (β(t)

1 , β
(t)
2 , . . . , β(t)

p )′, denote β
(t+1)
(k ) = (β(t+1)

1 , . . . , β(t+1)
k−1 ,

βk , β
(t)
k+1, . . . , β

(t)
p )′ for k = 1, 2, . . . , p, and t = 0, 1, . . . .

Stage 1: Estimation of α

Using the Newton–Raphson algorithm (e.g., Press et al.,
1992, Chapter 9) we solve α from equation (3). That is, given
an initial value α(0), update α iteratively by

α(t) = α(t−1) −
[

∂S(α(t−1))
∂α′

]−1

S(α(t−1)), t = 1, 2, . . . ,

until α(t) converges to α̂, say, where α(t) is the updated value
of α at the tth iteration.

Stage 2: Estimation of the covariance matrices V i

Let the m × m diagonal matrix W̃ i = diag(1, 1, . . . , 1) be
the working matrix, i = 1, 2, . . . , n, and replace the covariance
matrix V i with the working matrix W̃ i in the estimating
functions (5). For an initial value β(0) = (β(0)

1 , β
(0)
2 , . . . , β(0)

p )′,
apply the bisection method (Press et al., 1992, Chapter 9.1)
to the function U(k )(β

(t)
(k ), α̂) to obtain the tth update β̃

(t)
k of

βk , k = 1, 2, . . . , p; t = 1, 2, . . . . Here the bisection method
actually finds a zero crossing β k (Jung, 1996). We cycle this

process until β̃
(t)

= (β̃(t)
1 , β̃

(t)
2 , . . . , β̃

(t)
p )′ converges to β̃, say.

Therefore, V i in equation (5) may be estimated by the em-
pirical estimate Ṽ i , where the (j, k) element is given by the
empirical estimate
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p̃ijk =

n∑
i=1

I(Rij = 1)I(Rik = 1)I(Yij � x′
ij β̃)I(Yik � x′

ik β̃)

n∑
i=1

I(Rij = 1)I(Rik = 1)

,

j �= k.

Stage 3: Estimation of parameters β of interest

Now we apply the estimating functions (5), with V i re-
placed by Ṽ i and α replaced by α̂, to update β using the
bisection method in the same manner as in stage 2. Denote
by β̂ the estimator of β.

We comment that this estimation procedure is sensitive to
the choice of initial value β(0). The empirical estimate Ṽ i

may not be positive definite in some cases. A proper choice of
initial values could avoid negative definite or singular matrix
estimate Ṽ i .

3.3 Asymptotic Properties
Let B and C be the parameter spaces for β and α, re-
spectively, and An (β, α) = n−1

∑n

i=1 φ−2 · D ′
iΓiV

−1
i ΔiΓiDi .

Assume that A(β, α) = limn→∞An (β, α) is positive def-
inite in a neighborhood of the true value (β0, α0) of (β,
α). Let P = −φA(β, α) and Qi = U i − E(∂U i /∂α′) ·
[E(∂S i (α)/∂α′)]−1 · S i (α), both evaluated at (β0, α0). In the
Web Appendix we prove the following asymptotic properties.

Theorem 1: Subject to regularity conditions including
(R.1) and (R.3) in Robins et al. (1995) and the assumptions
in Jung (1996), we have the following results: as n → ∞,

(1) β̂
p→β0

(2)
√

n(β̂ − β0)
d→N (0, P −1Σ[P −1]′), where Σ = E(QiQ

′
i ).

Comparing to the asymptotic distribution of the estimator
obtained from the mean regression model (e.g., Section 4 of
Yi and Cook, 2002a), we may notice that the asymptotic dis-
tributions for the mean and median estimators differ in the
form of the matrix P. In the case of mean regression P equals
the derivative matrix E(∂U i /∂β′); whereas for median regres-
sion this equality is no longer true because E(∂U i /∂β′) does
not exist due to discontinuity of U i (β, α). However, if we
follow the spirit of Godambe and Thompson (1984) to define
E(∂U i /∂β′) for discontinuous estimating functions, we may
obtain the following Theorem 2, which says that the asymp-
totic distributions for both the mean and median estimators
assume the same presentation. The proof of Theorem 2 is
given in the Web Appendix.

Theorem 2: P = E(∂U i /∂β′).

To conduct inference we need to estimate P and Σ as they
contain the unknown parameters. We may estimate P by
−φ̂An (β, α)|(β ,α,φ )=(β̂ ,α̂, φ̂ ), where φ̂ is a consistent estimate
of φ. Applying the law of large numbers element-wise,
we obtain that E(∂S i /∂α′) is consistently estimated by
Ŝα = ( 1

n

∑n

i=1(∂S i /∂α1), . . . , 1
n

∑n

i=1(∂S i /∂αq ))|α=α̂ , and
E(∂U i /∂α′) is estimated by Û α = ( 1

n

∑n

i=1(∂U i /∂α1), . . . ,

1
n

∑n

i=1(∂U i /∂αq ))|(β ,α,φ )=(β̂ ,α̂, φ̂ ), as n → ∞, where ∂U i /

∂αj = φ−1D ′
iΓiV

−1
i · (∂Δi /∂αj ) · εi , ∂Δi /∂αj = diag(aijk ,

k = 1, 2, . . . , m), and aijk = −(I(Rik = 1)/π2
ik ) · (∂πik /∂αj ).

As a result, Qi is consistently estimated by, as n →
∞, Q̂i = Û i − Û α [Ŝ

′
α ]−1S i (α̂) with Û i = φ̂−1D ′

iΓiV
−1
i ×

Δiεi |(β ,α)=(β̂ ,α̂), and hence leading to a consistent estimate

Σ̂ = n−1
∑n

i=1 Q̂i · Q̂
′
i of Σ.

Finally, we comment that φ comes into play when forming
the estimate of the covariance matrix. A consistent estimate
of φ is given by

φ̂−1 =

{
2h

n∑
i=1

m∑
j=1

I(Rij = 1)

}−1 n∑
i=1

m∑
j=1

I(Rij = 1)

× (f (μ̂ij ))−1{I(Yij � μ̂ij − h) − I(Yij � μ̂ij + h)},

where μ̂ij is the estimate of μij with β replaced by β̂, and h
satisfies h → 0 and nh/log (n) → ∞ as n → ∞ (Jung, 1996).

4. Application to CD4+ Cell Counts Data
We apply the proposed method to the motivating data de-
scribed in Section 1. There were 892 individuals in the study,
in which 461 individuals were randomly assigned to the 1500-
mg Zidovudine (treatment) group and 431 were placed in a
placebo group (Volberding et al., 1990; Davis, 2002, p. 369).
The CD4+ cell counts were measured, respectively, at weeks
8, 16, 32, and 48 after randomization. During the study a por-
tion of participants was lost to follow-up. In Table 1, we report
summary statistics for both treatment and control arms.

CD4+ cell counts are a biomarker for AIDS or AIDS-
related complex disease. In this study, one primary objec-
tive is to assess the treatment effect on increasing CD4+ cell
counts and possible time effect. As revealed in Figure 1 and
Table 1, the outcomes are skewed with a number of outliers;
therefore, we adopt a median regression model to postulate
the measurement process. Treatment indicator, time factor,
and their interaction term are included as covariates. Specifi-
cally, let Yij be the CD4+ cell counts for subject i at time j,
i = 1, 2, . . . , 892, j = 1, 2, 3, 4, then the median regression
model is taken as

μij = β0 + β1xi1 + β2xi2j + β3xi1xi2j , (6)

where xi1 = 1 if subject i received treatment, and 0 otherwise;
and xi2j = j indexes the jth assessment time for subject i.

As suggested in Volberding et al. (1990), dropouts may
reflect the selective withdrawal from the study of subjects
with low or declining CD4+ cell counts. The higher number
of withdrawals from the placebo group was reportedly due

Table 1
Summary statistics for the CD4+ cell count data

Time point 1 2 3 4

Treatment Mean 403.2 407.8 407.6 390.5
Median 390.0 388.5 394.0 378.0
Missingness 0% 5.9% 15.8% 36.9%

Placebo Mean 373.4 365.8 380.6 401.0
Median 360.0 345.0 357.0 384.0
Missingness 0% 7.0% 21.6% 42.2%
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Table 2
Analyses of the CD4+ cell count data

Parameter Est. SEs 95% C.I. p-value

Response
Intercept (β 0) 343.001 5.037 (333.128, 352.873) <0.001
Treatment (β 1) 56.999 7.059 (43.164, 70.834) <0.001
Time (β 2) 3.500 1.707 (0.154, 6.846) 0.040
Interaction (β 3) −10.500 2.435 (−15.273, −5.726) <0.001

Missingness
Intercept (α0) 1.215 0.148 (0.924, 1.506) <0.001
Past resp. (α1) 0.0013 0.0004 (0.0006, 0.0021) <0.001
Treatment (α2) 0.145 0.107 (−0.064, 0.355) 0.174

to a possible desire to take treatment to increase CD4+ cell
counts. To feature the dependence on the observed outcomes
and the treatment status, here we postulate the dropout pro-
cess with the logistic regression model

logitλij = α0 + α1yi,j−1 + α2xi1. (7)

Table 2 displays the estimates, standard errors (SEs), 95%
confidence intervals, and p-values for the model parameters.
The estimates of α′

j s are displayed at the bottom of Table 2.
As can be seen, α1 is statistically significant with a positive
estimate. If CD4+ cell counts are observed increasing at the
previous assessment, individuals are more likely to be present
for the following assessment. Positive estimate of α2 indicates
that a subject is more likely to drop out of the study if he/she
did not receive a treatment, but this trend is not statistically
significant. The top panel of Table 2 reports on the results for
the covariate effects for the measurement process. The anal-
ysis reveals a strongly positive treatment effect on increasing
CD4+ cell counts. There is no ample evidence of time effect
on increasing CD4+ cell counts. However, there does exists
evidence to support the interaction effect of time and treat-
ment on increasing CD4+ cell counts.

Finally, we comment that we should be cautious in in-
terpreting the analysis results. Missing data mechanisms are

Table 3
Assessment of the proposed median regression method

Estimate − true value (SEs) Coverage percentage

Size Analysis ρ β 0 β 1 β 2 β 3 β 0 β 1 β 2 β 3

200 Analysis 1 0.0 0.072 (0.106) −0.065 (0.145) −0.014 (0.031) 0.019 (0.040) 94.2 96.0 94.0 94.0
0.3 0.041 (0.120) −0.031 (0.166) −0.005 (0.032) 0.008 (0.042) 94.5 96.1 95.6 96.1
0.5 0.037 (0.125) −0.023 (0.174) −0.004 (0.033) 0.005 (0.041) 93.8 95.9 94.0 96.4
0.7 0.043 (0.128) −0.023 (0.174) −0.001 (0.034) 0.002 (0.040) 94.8 96.4 94.2 93.2

Analysis 2 0.0 0.058 (0.100) −0.081 (0.134) −0.015 (0.029) 0.022 (0.038) 95.4 95.8 95.2 95.0
0.3 0.046 (0.108) −0.075 (0.147) −0.011 (0.029) 0.019 (0.037) 95.2 95.4 96.0 97.0
0.5 0.048 (0.109) −0.065 (0.147) −0.012 (0.029) 0.017 (0.035) 96.2 97.0 96.0 97.8
0.7 0.055 (0.113) −0.078 (0.154) −0.011 (0.028) 0.017 (0.035) 96.2 96.8 96.0 96.4

1000 Analysis 1 0.0 0.026 (0.058) −0.025 (0.080) −0.005 (0.016) 0.006 (0.022) 93.8 96.8 96.4 95.8
0.3 0.012 (0.062) −0.010 (0.082) −0.001 (0.016) 0.001 (0.021) 95.2 96.4 95.4 95.6
0.5 0.010 (0.056) −0.002 (0.077) −0.002 (0.015) 0.002 (0.018) 95.8 96.8 95.3 95.5
0.7 0.005 (0.060) −0.004 (0.082) 0.001 (0.014) −0.001 (0.018) 96.7 95.3 95.3 94.7

Analysis 2 0.0 0.025 (0.057) −0.030 (0.079) −0.006 (0.016) 0.007 (0.022) 94.6 96.4 96.2 95.2
0.3 0.026 (0.058) −0.025 (0.080) −0.005 (0.016) 0.006 (0.022) 93.2 96.4 96.0 95.6
0.5 0.025 (0.058) −0.026 (0.075) −0.007 (0.015) 0.008 (0.018) 93.2 95.6 93.8 93.8
0.7 0.020 (0.060) −0.025 (0.081) −0.004 (0.014) 0.005 (0.018) 94.6 94.0 94.0 94.0

generally not testable unless certain restrictions are made.
Postulating the dropout process by a model like (7) may help
us understand the impact of dropouts on estimation of β
parameters.

5. Simulation Study
5.1 Assessment of the Proposed Median Regression Method
Lipsitz et al. (1997) discussed a special case of estimating
functions (5), where the covariance matrix V i is simply taken
as the identity matrix Im ×m . That form, though still being
unbiased for a given α, failed to account for serial correlation
among response components. Moreover, theoretical properties
of the resulting estimators have not been established in Lipsitz
et al. (1997). In this subsection, we evaluate the performance
of the proposed method through simulation studies, in con-
trast to the method discussed in Lipsitz et al. (1997). Here
analysis 1 refers to the proposed method whereas analysis 2
is based on the method discussed in Lipsitz et al. (1997).

We simulate longitudinal responses from a multivariate nor-
mal distribution with marginal medians (equation (6)) and
the covariance matrix σ2Ω, where Ω is the m × m matrix
with the diagonal elements being 1 and the off diagonal el-
ements ρ. The covariates include a treatment indicator xi1,
simulated from Bernoulli(0.5), the temporal effect xi2j , which
is the index j of the follow-up time, and the interaction term
xi1xi2j . We consider a number of scenarios with ρ = 0, 0.3,
0.5, and 0.7 to feature increasing strength of association from
independence to high correlation. σ2 is taken as 1.0. Set β =
(β 0, β 1, β 2, β 3)′ = (6.0, −5.0, 1.0, 15.0)′ and m = 6. Take n =
200 and 1000 to represent moderate and large sample sizes,
respectively. Five hundred simulations are conducted for each
parameter configuration. For the dropout process we employ
logistic regression model (7), where parameters α are taken
as (1.0, 0.1, −0.5)′.

In Table 3, we report the differences between the estimates
and the true values along with the empirical SEs and the
empirical coverage rates for 95% confidence intervals. As ex-
pected, the differences between the estimates and the true
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values and SEs obtained from both analyses become smaller
as sample size increases. As ρ = 0, both analyses give rise
to comparable differences between the estimates and the true
values. However, when the association exists among the re-
sponse components, the differences between the estimates and
the true values yielded by the two analyses could be quite dif-
ferent. Analysis 1 tends to result in a lot smaller differences
than analysis 2, and the magnitude in the two analyses is
more noticeable as the association among the response com-
ponents becomes stronger. It is not surprising that the differ-
ences between the estimates and the true values resulted from
analysis 2 do not appear to change much with the strength of
ρ, because the association among the response components is
not accounted for by analysis 2. Finally, we notice that the
empirical coverage rates are reasonably consistent with the
nominal level 95% in general.

5.2 Comparison of Median and Mean Regression Methods
In practice, the distribution of data could be heavily tailed or
highly skewed. In this subsection, we assess the performance
of the proposed method under a variety of distributions. Typ-
ically, we undertake simulations to compare the performance
of the proposed median regression method in contrast to the
usual mean regression approach.

In addition to a normal distribution, we consider non-
normal distributions—Cauchy and exponential distributions,
which represent distinct scenarios of heavily tailed or skewed
distributions. We simulate data from each of the distributions
with the median regression given by equation (6). To be spe-
cific, when considering an exponential distribution we gener-
ate Y ij from the density function f (y) = (1/θij ) exp(−y/θij )
with θij = (log (2))−1μij ; when generating data from a Cauchy
distribution we invoke the cumulative distribution function
F (y) = 1/2 + (1/π)arctan(y − μij ) for Y ij ; and we employ
the distribution N (μij , 1) to simulate Y ij for the case of a
normal distribution. Again, m is set as 6, and the covariates
are simulated as in Section 5.1. The vector of covariate coef-
ficients β = (β 0, β 1, β 2, β 3)′ is set to be (0.5, 0.5, 0.1, 0.1)′.
Missing data indicators are generated from logistic regression
model (7), where parameters α are taken as (2.0, 0.5, 0.5)′.
Two hundred simulations are run for each of the distributions
for the cases with n = 200 and n = 1000.

Table 4
Comparison of median and mean regression methods under different distributions

Estimate − true value (SEs) Coverage percentage

Size Distribution Method β 0 β 1 β 2 β 3 β 0 β 1 β 2 β 3

200 Normal Median 0.010 (0.211) −0.030 (0.291) −0.001 (0.057) 0.001 (0.078) 94.0 96.5 95.5 96.0
Mean 0.012 (0.098) −0.001 (0.137) −0.002 (0.027) −0.002 (0.037) 96.0 96.0 96.5 96.5

Exponential Median 0.029 (0.670) −0.163 (0.893) −0.001 (0.131) 0.065 (0.166) 99.4 98.9 98.3 92.5
Mean 0.222 (0.076) 0.226 (0.164) 0.044 (0.022) 0.044 (0.042) 12.5 72.5 52.5 86.0

Cauchy Median 0.087 (0.242) 0.019 (0.412) 0.012 (0.080) 0.057 (0.157) 94.6 96.7 92.4 95.7
Mean – – – – – – – –

1000 Normal Median 0.017 (0.112) −0.028 (0.155) −0.004 (0.031) 0.007 (0.042) 95.5 93.5 93.5 95.5
Mean −0.001 (0.045) 0.005 (0.062) 0.001 (0.012) −0.002 (0.017) 94.0 95.0 95.0 94.0

Exponential Median 0.000 (0.210) −0.018 (0.291) 0.011 (0.032) 0.005 (0.042) 99.5 97.9 97.3 92.5
Mean 0.225 (0.035) 0.213 (0.074) 0.045 (0.010) 0.043 (0.019) 0.0 17.5 0.0 30.5

Cauchy Median 0.039 (0.194) 0.045 (0.284) 0.009 (0.065) 0.014 (0.082) 96.3 96.3 96.3 96.3
Mean – – – – – – – –

We fit the data with the proposed median regression
method as well as the IPWGEE approach based on mean
regression. In Table 4, we report the differences between the
estimates and the true values, the empirical SEs for β̂, and
the coverage rates for 95% confidence intervals. For the nor-
mal distribution both methods provide fairly comparable fi-
nite sample differences between the estimates and the true
values, though the median regression method produces rela-
tively larger differences for some parameters. Median regres-
sion is less efficient than mean regression as it results in larger
SEs. But median regression does yield reasonable coverage
rates for 95% confidence intervals just like mean regression
does. As the sample size increases, the SEs obtained from
both methods reduce as expected.

The performance for the median and mean regression meth-
ods, however, is dramatically different for nonnormally dis-
tributed data. If data are generated from a Cauchy distribu-
tion, mean regression breaks down as the moments for Cauchy
distributions do not exist. Nevertheless, median regression
performs reasonably well. The finite sample differences be-
tween the estimates and the true values are fairly small, and
the coverage rates for 95% confidence intervals are satisfac-
torily close to the nominal level. Again, it is observed that
a larger sample size leads to smaller SEs. For data gener-
ated from an exponential distribution, median regression still
maintains reasonable performance with relatively satisfactory
coverage rates and finite sample differences between the es-
timates and the true values. However, mean regression fails
to provide comparable results. The differences between the
estimates and the true values are consistently and consider-
ably larger than those from median regression, and the cov-
erage rates are far from the nominal level. It is seen that
mean regression may never capture the true values for some
parameters.

In summary, the proposed median regression method per-
forms satisfactorily for a variety of data with distinct distri-
butions. The finite sample differences between the estimates
and the true values are reasonably small, and the coverage
rates are relatively reliable. The performance of the weighted
mean regression approach, however, does remarkably de-
pend on the shape of the distribution of the data. For nor-
mally distributed data, mean regression produces reasonably
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accurate results, but it may break down or fail to provide re-
liable results for data with a distribution far from a normal
one.

6. Extension to Estimation of Association Parameters
In this section, we discuss an extension for which the associ-
ation structure of the repeated measurements is specifically
incorporated in estimation procedures. This development is
useful when the interest also lies in characterizing associa-
tion among response components (e.g., Prentice, 1988; Yi and
Cook, 2002a; Yi and Thompson, 2005).

For i = 1, 2, . . . , n, let Z ijk = I(Y ij � μij ) I(Y ik �
μik ) for j < k, and Z i = (Zi12, Zi13, . . . , Zi1m , Zi23, . . . ,
Zi2m , . . . , Zi,m −1,m )′. Define the odds ratio

ψijk =
P (Yij � μij , Yik � μik |xi )P (Yij < μij , Yik < μik |xi )
P (Yij � μij , Yik < μik |xi )P (Yij < μij , Yik � μik |xi )

,

j < k,

which can facilitate the association between Y ij and Y ik , in
combination of the covariate information. Regression models
for the association can be typically specified as

log ψijk = u∗′
ijkδ, (8)

where u∗
ijk is a vector of covariates, which specifies the form

of the association between Y ij and Y ik , and δ is a vector
of regression parameters. Letting u∗

ijk be the scalar one, for
example, leads to the exchangeable association between re-
sponses within the same subject; and setting u∗

ijk = |j − k|
gives rise to an autoregressive association.

The joint probability pijk can be written as:

pijk =

⎧⎪⎨
⎪⎩

aijk −
[
a2

ijk − 4ψijk (ψijk − 1)μij μik

] 1
2

2(ψijk − 1)
, if ψijk �= 1,

μij μik , if ψijk = 1,

(9)

where aijk = 1 − (1 − ψ ijk )(μij + μik ). Let pi = (pi12, pi13, . . . ,
pi1m , pi23, . . . , pi2m , . . . , pi,m −1,m )′, C i = ∂pi /∂δ′, W ∗

i =
diag(pijk (1 − pijk ), j < k), and Δ∗

i = diag(I(Rij = 1)I(Rik =
1)/π ijk , j < k), where πij k = P (Rij = 1, Rik = 1 |xi , yi ). If U ∗

i

= C ′
i [W

∗
i ]

−1Δ∗
i (Z i −pi ), then association parameters δ can

be estimated by the estimating equations:

U ∗ =
n∑

i=1

U ∗
i = 0.

It is easily seen that E(U ∗) = 0, i.e., U∗ consists of unbiased
estimating functions for δ. Estimation of both β and δ can
be performed based on U and U∗ by adapting the algorithm
described in Section 3.2, where π ijk is replaced by its estimate
π̂ijk that can be handled by adapting the argument in Yi and
Cook (2002a).

7. Discussion
This article discusses median regression models for longi-
tudinal data with dropouts. Inverse probability weighted
estimating equations are employed to estimate median regres-
sion parameters. This perhaps appears similar to the tradi-
tional approach of the inverse probability weighted estimating

equations for mean regression models that have been exten-
sively discussed in the literature. However, our current de-
velopment cannot be viewed as a direct application of that
approach, because the constructed estimating functions here
are not continuous as usual. In this article, we have estab-
lished asymptotic properties for the estimators obtained from
the proposed weighted estimating equations. The simulation
studies demonstrate that the proposed method performs well
under a variety of situations, especially when mean regres-
sion breaks down for distributions that are far from normal
distributions.

The proposed methods can be extended in a straight-
forward fashion to accommodate general quantile regression
models, which may be of practical interest sometimes. He
et al. (2003) considered the LAD approach for median regres-
sion models for complete longitudinal data. It is interesting
to adapt the proposed methods to the LAD regressions to
handle incomplete longitudinal data.

8. Supplementary Materials
A Web Appendix referenced in Section 3.3 is available un-
der the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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